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Abstract

Objective—To analyze over 700,000 cross-sectional measurements from the Mine Safety and 

Health Administration (MHSA) and develop statistical models to predict noise exposure for a 

worker.

Design—Descriptive statistics were used to summarize the data. Two linear regression models 

were used to predict noise exposure based on MSHA permissible exposure limit (PEL) and action 

level (AL) respectively. Two-fold cross validation was used to compare the exposure estimates 

from the models to actual measurements in the hold out data. The mean difference and t-statistic 

was calculated for each job title to determine if the model exposure predictions were significantly 

different from the actual data.

Study Sample—Measurements were acquired from MSHA through a Freedom of Information 

Act request.

Results—From 1979 to 2014 the average noise measurement has decreased. Measurements taken 

before the implementation of MSHA’s revised noise regulation in 2000 were on average 4.5 dBA 

higher than after the law came in to effect. Both models produced mean exposure predictions that 

were less than 1 dBA different compared to the holdout data.

Conclusion—Overall noise levels in mines have been decreasing. However, this decrease has not 

been uniform across all mining sectors. The exposure predictions from the model will be useful to 

help predict hearing loss in workers from the mining industry.
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Introduction

Noise is one of the most common occupational exposures in the United States (US). Tak et 

al. (2009) estimated that 22 million workers were exposed to hazardous noise levels based 
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on self-reported noise exposure. The National Institute for Occupational Safety and Health 

(NIOSH) estimates that over four million American workers are potentially exposed to 

hazardous noise >85 dBA, and that the excess risk of noise-induced hearing loss (NIHL) at 

this exposure level ranges from 8 to 16% depending on the hearing loss metric and statistical 

model used (NIOSH, 1998). NIHL is among the top ten leading work-related illnesses and 

injuries identified by NIOSH. The overall prevalence of hearing loss in the working 

population is estimated to be 11.4%, while the railroad and mining industries have the 

highest and second-highest prevalence (34.8% and 24.3%, respectively) (Tak & Calvert, 

2008). NIOSH estimated that, on average, 100–200 coal, 50–150 metal and 10–40 non-metal 

workers per 100,000 full-time workers experienced hearing loss each year. This accounted 

for around one fifth of the total reported injury cases in the mining sector (NIOSH, 2000). 

NIOSH also estimated that by the age of 50, 90% of miners will have developed a hearing 

loss >25 dB at the 1, 2, 3, and 4, kHz frequency (NIOSH, 2000).

The estimated economic cost of hearing loss varies widely. The World Health Organization 

(WHO) estimated the cost of hearing loss to be between 0.2 to 2% of gross domestic product 

(GDP) for developed countries (WHO, 1997). Emmett and Francis (2015) further found that 

hearing loss was independently associated with lower educational achievement and lower 

income than those without hearing loss. The cost of compensation for hearing loss in US 

military Veterans alone was over $1.2 billion in 2006 (Saunders & Griest, 2009). Recently 

Neitzel et al. estimated that the US could save between $52 and $152 billion each year if 

20% of hearing loss from hazardous noise was prevented (Neitzel et al., In Press) 

Additionally, there is a growing body of evidence that noise exposure may be associated 

with a number of important non-auditory health effects, including cardiovascular disease 

(Basner et al., 2014). These effects may be particularly evident among miners, as mining has 

traditionally been considered one of the noisiest industries in the US (Tak et al., 2009).

The Mine Safety and Health Administration (MSHA) was established by the Federal Mine 

Safety and Health Act of 1977 to promulgate and enforce health and safety regulations for 

the mining industry (Federal Mine Safety and Health Act, 1977). The permissible exposure 

limit (PEL) for noise was set at 90 dBA as an eight-hour time weighted average (TWA) with 

a 5 dB time-intensity exchange rate for all sound levels from 90 to at least 140 dBA (Federal 

Mine Safety and Health Act, 1977). In addition, the Federal Mine Safety and Health Act 

established regulations regarding requirements for use of noise controls and hearing 

protectors (and, in the case of coal mines, implementation of hearing conservation programs, 

HCPs) that varied depending on the type of mine. In 1999 MSHA published a revised rule 

on occupational noise which harmonized the rules regarding HCPs and the implementation 

of noise controls in all mines in the United States. In addition, the new rules established an 

action level (AL) of 85 dBA as a TWA with a 5 dB exchange rate for sound levels between 

80 and at least 130 dBA, as well as harmonized requirements for HCPs (30 CFR Part 62, 

1999).

To help fulfill its mandate, MSHA conducts routine noise monitoring inspections in mines of 

all types, and amassed a dataset of over 700,000 noise dosimetry measurements from 1979 

to 2014. Most of these measurements include information on the type of mine (facility, 

surface, or underground), what was being mined (coal, metal, or non-metal) whether the 
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measurement was made using the PEL or AL criteria, and job title or task description for 

each measurement. In 2007, Joy and Middendorf (2007) conducted an analysis of noise 

measurements in coal mines from 1986 to 2004. This analysis yielded important insights 

into noise in US mines, but was limited by the short (four-year) time period for which data 

were available following implementation of MSHA’s revised noise regulation in 2000. 

There has not been a comprehensive analysis of noise exposure in the mining industry since 

the analysis by Joy and Middendorf (2007). The continued high prevalence of hearing loss 

among workers in the mining industry warrants another careful analysis noise exposure in 

the mining industry (Masterson et al., 2016).

Measurements from this dataset were analyzed as part of a larger job exposure matrix (JEM) 

for occupational noise. Our study had two goals intended to increase our understanding of 

past and present noise exposure in the mining industry and to help predict future exposures 

so that adequate controls can be implemented to protect workers’ health. The first goal of 

this analysis was to describe and evaluate trends in measured occupational noise levels 

among US miners from 1979 to 2014. The second goal was to use the measurements in the 

dataset to build a statistical model that could be used to estimate a worker’s occupational 

noise exposure based on their job title, and the type of mine.

Methods

Data Collection and Cleaning

This study was approved by The University of Michigan Institutional Review Board 

(HUM00083043). Data were requested from MSHA through a Freedom of Information Act 

request in May 2014. Data were received from MSHA in electronic format (Microsoft Excel 

spreadsheets and Microsoft Access databases) (Microsoft, Inc, Redmond, WA). The data 

were imported into STATA 14 (Stata Corp, College Station, TX) for data cleaning and 

analysis. The type of mineral being mined was coded using four-digit codes from the 2012 

North American Industrial Classification System (NAICS) (Office of Management and 

Budget, 2009). The job titles were coded using the Bureau of Labor Statistic’s 2010 

Standard Occupation Classification (SOC) system (US Department of Commerce, 2010). 

The job titles were provided as string variables and contained numerous spelling errors and 

many different job titles that were considered synonymous. Regular expressions were used 

to efficiently identify patterns in the job titles so that SOC codes could be assigned 

(Stubblebine, 2007). Based on the assigned SOC code each job title was also assigned a 

major occupational group according to the SOC structure (miners, maintenance, production, 

transportation/material moving, and other). Information pertaining to specific companies or 

mining sites was removed from this analysis; all other identifiable information (sample ID, 

citation status, etc.) was also removed.

Measurements reported as a noise dose were converted to A-weighted measurements using 

the equation  (OSHA, 2013). Cases without any 

measurements or with TWA measurements <60 dBA and >120 dBA as a TWA were 

removed because these measurements were deemed unlikely to represent typical exposures. 

Any measurements with job titles that could not be converted to SOC codes, either because 

no job title was given or because the job title did not provide sufficient information, were 
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removed to help minimize the misclassification of job titles. Finally, any measurements with 

a sample time >16 hours were removed.

Statistical Analysis

Histograms, box plots, and other data visualization methods were used to assess the 

distribution of measurements. Descriptive statistics were calculated for the entire dataset. 

Descriptive statistics were then calculated and stratified by type of mine, miner SOC group, 

and year. The percentage of measurements > 85 and > 90 dBA (the AL and PEL) was 

calculated before and after the implementation of the MSHA noise rule in 2000, stratified by 

the type of mine and mineral being mined.

Two fixed-effect linear regression models were developed to predict average noise exposure 

for a specific SOC. One model was developed to predict noise exposure using the MSHA 

PEL; the other was developed to use the MSHA AL. Both models contained covariates for 

the year (centered to 1979 for the PEL measurements and 2000 for the AL measurements), 

SOC code, mine type (surface, underground, and facility), and what type of mineral was 

being extracted (coal, metal, non-metal). Because of the large number of measurements the 

holdout method (two-fold cross-validation) was used to split the data for both models into a 

training set which comprised 70% of the measurements and a validation set which was 

comprised of the other 30%. Model fit was evaluated using the coefficient of determination 

(R2, where higher value indicate better model fit) and Akaike information criterion (AIC, 

where lower values indicate less information loss within nested models) (Picard & Cook, 

1984). The mean predicted exposures were then calculated from the model in the training set 

for each SOC and subtracted from the mean value of the same SOC from the validation data 

set. A student’s t-test was used to determine if there was a significant difference (α=0.05) 

between the predicted values from the training set and the values in the validation set.

Results

Prior to data cleaning there were a total of 619,028 PEL measurements and 283,169 AL 

measurements available. Table 1 summarizes the steps in the data cleaning process and the 

number of measurements eliminated for each exclusion criteria. The largest loss of PEL 

measurements was the result of missing information regarding what type of material was 

being mined. The largest loss of AL measurements occurred because the TWA 

measurements were below 60 dBA. In total, 120,159 (19.4%) PEL and 7,421 (2.7%) AL 

measurements were removed from the dataset, leaving 498,869 and 275,748 valid PEL and 

AL measurements. The mean PEL measurement prior to 2000 was 84.4 dBA with a standard 

deviation (SD) of 8.2 compared to a mean of 79.9 ± 8.6 dBA after 2000; this difference was 

highly significant (p < 0.0001). The mean AL (post-2000) was 83.7 ± 6.9 dBA.

Figure 1 shows that the average TWA for PEL measurements have been steadily decreasing 

over time. AL measurements, made starting in 2000, followed a similar pattern, with higher 

measured levels than those indicated by the PEL due to the different measurement ranges 

used (80–130 dBA for the AL versus. 90–140 dBA for the PEL). Table 2 summarizes the 

changes in average noise exposure before and after the year 2000 stratified by what material 

was being mined and what type of mine the measurements came from. On average, the PEL 
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measurements decreased by 4.5 dBA for measurements made after the implementation of 

MSHA’s updated noise regulation in 2000. The greatest reduction in PEL exposures was 

seen in non-metal mines, where measurements decreased by 6.5 dBA, while coal and metal 

mines only by 2.7 and 2.8 dBA respectively, and underground coal mines only decreased by 

0.8 dBA. The average AL measurements ranged from 81.9 in surface non-metal mines to 

87.9 dBA in underground metal mines.

Figure 2 summarizes the percentage of measurements that exceeded the 85 dBA AL and 90 

dBA PEL. Prior to the year 2000, 23.5% of all TWA measurements exceeded the MSHA 

PEL of 90 dBA, and underground metal mining had the highest noise exposures of all mine 

types, with 44.8% of the TWA measurements exceeding 90 dBA. Following the 

implementation of MSHA’s revised noise regulation in 2000, 21.7% of measurements 

exceeded the AL and 7.0% exceeded the PEL. After the year 2000, underground metal 

mining continued to have the greatest percentage of measurements (17.4%) that exceeded 

the PEL, while underground coal mining had the greatest percentage of measurements 

(48.4%) that exceeded the AL.

Table 3 shows the percentage of PEL TWA measurements pre- and post-2000 that exceeded 

a range of cutpoints (85, 90, 105, and 115 dBA), stratified by material mined and mine type. 

The percentage of measurements exceeding each of the four cutpoints dropped after the year 

2000 across all mine types and materials mined, with the largest reductions in measurements 

exceeding these cutpoints seen in underground non-metal mines, and the smallest reductions 

seen in underground coal mines.

There were a total of 45 different job titles in this dataset. Appendix 1 provides the mean, 

standard deviation, and number of measurements for each job title before and after the year 

2000. The measurements for the 45 job titles were collapsed into broad occupational groups 

based on their assigned SOC codes. Figure 3 provides a box plot of the distribution of 

measurements for each broad occupational group. The mining exposure group had the 

highest median exposure both before and after the implementation of MSHA’s noise 

standard in 2000. The miner, production, and other groups all had very similar medians but 

the miner group had a larger number of statistical outliers than the other group suggesting 

that the likelihood of exposures greater than 105 dBA is higher in this group.

The regression coefficients for PEL and AL models created using the training dataset are 

presented in Appendix 2. The PEL model contained measurements from 1979 through 2014 

while the AL model contained measurements from 2000 through 2014. In both models the 

year variable was centered to the first year that measurements were collected. The adjusted-

R2 for the models were 0.1540 for the PEL and 0.1339 for the AL model. When controlling 

for job title, material being mined, and the type of mine, both models predicted that noise 

exposure has decreased over time (−0.331 and −0.243 dBA per year for the PEL and AL 

model). This indicates that on average noise levels in the mining industry have decreased by 

about 0.3 and 0.2 dBA each year for PEL and AL measurements. Coal mines were predicted 

to be noisier than metal and non-metal mines in the PEL model but metal mines were found 

to be noisier than coal and non-metal mines in the AL model. Underground mines were 

found to be noisier than facility and surface mines in both the PEL and AL models. Roof 
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bolters were estimated to have the highest exposure in the PEL model while landscaping and 

grounds keeping workers were estimated to have the highest exposure in the AL model.

The overall mean for the predicted values from the training dataset PEL model was 82.0 

± 3.4 dBA compared to a mean of 82.0 ±8.7 dBA for the validation dataset. The interquartile 

range (IQR) for the predicted values was 5.0 dBA compared to 12.2 dBA for the validation 

data. For each job title, predictions from the PEL model were on average 0.9 dBA different 

than the actual measurements in the validation dataset. The results of the t-tests found that 

six job titles had significantly different (p<0.05) predicted and actual mean exposures. Only 

three job titles had a mean difference greater than 2 dBA and these job titles had a smaller 

number of measurements compared to other job titles in the dataset. The overall mean for 

the predicted values from the AL model was 83.7 ± 2.5 dBA while the validation data had a 

mean of 83.7 ± 6.9 dBA. The IQR was 3.4 and 8.7 dBA for the predicted and validation 

datasets, respectively. For each job title, predictions from the AL model were on average 0.7 

dBA different than the validation values. Two job titles were found to have predicted values 

significantly different from the validation values, the difference between the predicted and 

validation values for both job titles were less than 2 dBA.

Discussion

The results from this analysis indicate that mean noise exposure in the mining industry has 

been decreasing every year. This concurs with the results from Joy and Middendorf (2007), 

who found that the overall annual median noise dose declined 67% for surface coal mining 

and 24% for underground coal mining from 1986 to 2004. The reductions in exposure noted 

in our analyses are likely due, at least in part, to the implementation of MSHA’s revised 

noise regulation in 2000 and to improvements in mining technology and noise control 

(Kovalchik et al., 2007; Smith et al., 2011). However, this reduction in noise exposure does 

not appear to be evenly distributed among different types of mines, nor has it been 

completely monotonic. Workers in underground coal mines in particular had a smaller 

decrease in noise exposure than workers in other mine types mining other materials when 

comparing measurements before and after the implementation of MSHA’s noise standard. 

There was also a small increase in the percentage of facility coal miners exposed to noise 

>105 dBA and underground coal miner exposed to noise > 115 dBA. Our analysis does not 

allow us to know why this increase has occurred or if it is statistically significant. However, 

it is possible that as mining technology becomes more automated and requires less workers a 

small sub-group of miners may be exposed to very high levels of noise as they operate 

machinery.

Regardless of what types of materials were being mined, workers in underground mines 

were found to have the highest noise exposure. This is not surprising, as underground mine 

work involves use of noisy heavy equipment in tightly-enclosed, reverberant spaces 

(Peterson et al., 2006). This suggests that additional resources should be directed to design 

and implement new noise control technologies that can be used in underground mines. Prior 

to 2000, coal, metal, and non-metal mines had a similar mean exposure level; however, after 

the year 2000, non-metal mines experienced a much larger decrease in noise exposure than 

coal and metal mines. A portion of this difference can be attributed to the smaller percentage 
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(5.9%) of underground mine measurements from the non-metal mining sector that were 

taken post-2000 compared to underground coal (52.5%) and metal (44.2%) mines. The mean 

exposure in underground mines in the non-metal mining sector was still 2–3 dBA lower than 

coal or metal mining. This difference could be caused by the differences in tools and 

techniques for extracting coal and metals compared to non-metals (Peterson et al., 2006), or 

perhaps by differing production demands.

Following the implementation of MSHA’s revised noise regulation, noise exposures dropped 

for all broad occupational groups. Pre-2000, between 15 and 45% of all PEL measurements 

exceeded the 90 dBA PEL, while post-2000, 3–17% percent exceeded 90 dBA. Following 

the introduction of the revised regulation, the median AL exposures in both miner and 

production groups exceeded the 85 dBA AL, suggesting that workers in these groups should 

be the focus of further efforts to reduce noise exposure in the mining industry.

The mean training dataset predictions from the linear models were very close to the mean 

measurements in the validation dataset despite having a relatively low adjusted-R2 (0.1540 

and 0.1339 for the PEL and AL models respectively). This occurred because the large 

number of samples present in both models and the validation training sets results in a very 

stable and unbiased mean exposure estimate for each job title (Seixas & Sheppard, 1996). 

This is the primary advantage of working with large datasets and makes the predictions 

generated by these models useful for both establishing a past exposures and helping predict 

future exposures for groups of workers. However, it is very important to recognize that there 

is an inherent variability in an individual worker’s exposure from day to day due to a number 

of factors, including the implementation of controls, workload, and personal work habits 

(Kromhout et al., 1993). As a result, the predictions from the model should not be used in 

place of noise monitoring. The best use of the model would be to predict mean yearly 

exposures to noise for groups of workers in each of the mine types and materials mined in 

order to help predict the risk of developing hearing loss in the future.

There are some limitations that need to be considered when using this model. The first is the 

possibility of error in exposures estimates due to misclassification of some job titles. We 

attempted to reduce this risk by using the SOC database to standardize job titles, and by 

removing measurements where a SOC code could not be assigned. It is also important to 

consider that grouping workers by job titles does not guarantee that all those workers have 

similar exposures (Rappaport et al., 1993). Another limitation is that 123,031 measurements 

could not be included in this analysis because they met the exclusion criteria. The majority 

(91,231) of these measurements were excluded because they did not provide any information 

on what material was being mined. We could not identify an efficient method to find the 

missing information for these measurements and chose to exclude them because of the 

overall size of the dataset would prevent the exclusion of these measurements from 

introducing significant error to the analysis. If information on material being mined was 

missing in a non-random fashion, this could have introduced bias into the estimates 

presented here. We also removed 25,339 measurements for being below 60 dBA. Removing 

these measurements likely resulted in slightly higher mean exposures in our analysis, but we 

believe this is justified because it is very unlikely that an eight-hour TWA at a mine site 

would be < 60 dBA (the noise level of an average conversation). We believe that the effects 
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of these excluded measurements on our analyses are likely small due to the size of the 

dataset.

Despite these limitations, the analysis herein signifies a substantial expansion of the previous 

work by Joy and Middendorf (2007), and provides an up-to-date examination of noise 

exposure in the mining industry. The main strength of this analysis is the size and scope of 

this dataset makes it possible to calculate very accurate group exposure estimates. Another 

strength of this analysis is that the use of the SOC system provides a standardized method 

for future studies to classify job titles in a harmonized manner so that exposure information 

can be more easily compared between studies. Additionally, by stratifying exposure groups 

by the type of mine and what mineral is being extracted, it is possible to discern exposure 

differences between different mining sectors and mine types so that sector- and mine-

specific controls can be implemented to reduce noise exposure. Finally, the models 

presented here can be used to predict a worker’s mean yearly noise exposure based on their 

job title, type of mine they were employed at, and the year of their employment. This 

information could help identify workers at increased risk of developing NIHL and help 

prioritize resources to implement engineering controls and ensure that the worker is enrolled 

in a HCP.
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List of acronyms and abbreviations

AL Action Level

AIC Akaike information criterion

dBA A-weighted decibel

R2 Coefficient of determination

HCP Hearing conservation program

IQR Interquartile range

JEM Job exposure matrix

MSHA Mine Safety and Health Administration

NIOSH National Institute for Occupational Safety and Health

NIHL Noise-induced hearing loss

NAICS North American Industrial Classification System

PEL Permissible exposure limit
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SOC Standard Occupation Classification

TWA Time weighted average

WHO World Health Organization
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Appendix 1. Comparison of permissible exposure limit (PEL) 

measurements before and after 2000 by job title

SOC

<2000 PEL ≥2000 PEL

Mean SD N Mean SD N

Maintenance

 Electrical Power-Line Installers and Repairers 75.6 6.7 9

 Maintenance and Repair Workers, General 83.4 7.3 3,240 79.9 8.0 10,030

 Maintenance Workers, Machinery 84.8 7.0 967 82.6 7.8 1,290

 Mobile Heavy Equipment Mechanics, Except Engines 81.0 7.6 5,347 77.7 7.7 8,122

 Overall 82.2 7.6 9,554 79.2 8.0 19,451

Miners

 Continuous Mining Machine Operators 84.9 8.4 166,788 79.7 8.8 160,092

 Earth Drillers, Except Oil and Gas 84.3 7.5 4,135 80.5 8.3 11,577

 Explosives Workers, Ordnance Handling Experts, and 
Blasters

83.4 7.8 436 80.0 7.8 858

 Extraction Workers 80.0 8.8 2,543 77.4 8.6 1,023

 Roof Bolters, Mining 90.2 7.5 310 86.0 5.0 20,485

 Overall 84.8 8.4 174,212 80.4 8.7 194,035

Production

 Crushing, Grinding, and Polishing Machine Setters, 
Operators, and Tenders

80.3 8.9 415

 Cutting and Slicing Machine Setters, Operators, and Tenders 84.4 7.6 1,446 83.7 7.9 2,813

 Drilling and Boring Machine Tool Setters, Operators, and 
Tenders, Metal and Plastic

84.5 5.8 1,346

 Foundry Mold and Coremakers 76.8 9.0 37

 Helpers--Production Workers 81.9 7.2 125 79.9 6.7 76

 Inspectors, Testers, Sorters, Samplers, and Weighers 80.6 8.3 536 74.0 8.0 713

 Machinists 76.5 8.0 151 75.7 8.6 103

 Packaging and Filling Machine Operators and Tenders 81.5 8.2 86 78.9 7.4 75

 Pourers and Casters, Metal 79.3 7.8 46 79.9 8.9 39

 Production Workers, All Other 83.4 7.0 79 80.9 6.8 69

 Supervisors of Production Workers 84.6 7.9 1,382 84.3 6.4 332

 Welders, Cutters, Solderers, and Brazers 78.9 8.3 543
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SOC

<2000 PEL ≥2000 PEL

Mean SD N Mean SD N

 Woodworkers, All Other 86.1 6.0 1,020

 Woodworking Machine Setters, Operators, and Tenders, 
Except Sawing

81.6 8.4 221 79.5 7.0 133

 Overall 83.6 7.6 5,418 82.0 8.5 6,368

Transportation/Material Moving

 Conveyor Operators and Tenders 80.1 6.9 1,798

 Heavy and Tractor-Trailer Truck Drivers 83.7 7.2 29,269 76.9 8.5 22,637

 Laborers and Freight, Stock, and Material Movers, Hand 81.3 7.5 1,397 78.2 8.4 1,934

 Pump Operators, Except Wellhead Pumpers 78.4 8.0 164

 Tank Car, Truck, and Ship Loaders 87.0 8.6 895 79.1 9.7 789

 Overall 83.7 7.3 31,561 77.2 8.5 27,322

Other

 Dispatchers, Except Police, Fire, and Ambulance 74.1 8.8 152

 Engineers 80.3 8.3 313 78.9 9.0 32

 Gaming Change Persons and Booth Cashiers 70.9 7.4 88

 Industrial Production Managers 78.7 7.6 2,997

 Janitors and Cleaners, Except Maids and Housekeeping 
Cleaners

85.0 7.4 8,532 81.8 7.8 4,612

 Landscaping and Groundskeeping Workers 82.8 7.4 481

 Life, Physical, and Social Science Technicians 78.2 8.2 976 73.8 7.1 407

 Mining and Geological Engineers, Including Mining Safety 
Engineers

73.1 7.1 47

 Occupational Health and Safety Technicians 73.3 10.1 6

 Stock Clerks and Order Fillers 80.1 8.1 470 76.8 6.7 49

 Ushers, Lobby Attendants, and Ticket Takers 72.3 7.9 6

 Overall 84.0 7.9 10,291 80.1 8.1 8,877

Appendix 2. Regression coefficients for the permissible exposure limit 

(PEL) and action level (AL) models

PEL Model AL Model

Coefficient SE P Coefficient SE P

Intercept 95.54 0.0819 <0.001 90.270 0.061 <0.001

Centered Year −0.331 0.00167 <0.001 −0.243 0.004 <0.001

SOC

Roof Bolters, Mining Reference Reference

Carpenters −6.078 0.478 <0.001 −4.070 0.452 <0.001

Cement Masons and Concrete Finishers −3.119 0.582 <0.001 −0.566 0.735 0.441

Construction Laborers −4.126 0.332 <0.001 −2.768 0.356 <0.001

Continuous Mining Machine Operators −3.078 0.075 <0.001 −2.171 0.062 <0.001

Conveyor Operators and Tenders −5.294 0.235 <0.001 −3.904 0.188 <0.001
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PEL Model AL Model

Coefficient SE P Coefficient SE P

Crushing, Grinding, and Polishing Machine 
Setters, Operators, and Tenders

−2.379 0.468 <0.001 −3.165 0.363 <0.001

Cutting and Slicing Machine Setters, Operators, 
and Tenders

0.820 0.166 <0.001 2.533 0.159 <0.001

Dispatchers, Except Police, Fire, and Ambulance −10.53 0.804 <0.001 −12.370 0.572 <0.001

Drilling and Boring Machine Tool Setters, 
Operators, and Tenders, Metal and Plastic

−7.281 0.266 <0.001 . . .

Earth Drillers, Except Oil and Gas −2.009 0.107 <0.001 −1.400 0.094 <0.001

Electrical Power-Line Installers and Repairers −6.894 3.586 0.055 −5.640 2.892 0.051

Electricians −5.249 0.178 <0.001 −4.821 0.149 <0.001

Engineers −8.956 0.523 <0.001 −3.738 1.322 0.005

Explosives Workers, Ordnance Handling 
Experts, and Blasters

−4.753 0.276 <0.001 −2.714 0.268 <0.001

Extraction Workers −6.69 0.179 <0.001 −5.538 0.235 <0.001

First-Line Supervisors of Construction Trades 
and Extraction Workers

−6.59 0.149 <0.001 −5.858 0.172 <0.001

Foundry Mold and Coremakers −7.661 1.673 <0.001 −6.261 1.321 <0.001

Gaming Change Persons and Booth Cashiers −13.87 0.982 <0.001 −14.170 0.688 <0.001

Heavy and Tractor-Trailer Truck Drivers −4.182 0.086 <0.001 −2.655 0.080 <0.001

Helpers--Production Workers −6.367 0.672 <0.001 −4.436 0.977 <0.001

Industrial Production Managers −5.629 0.187 <0.001 −5.523 0.148 <0.001

Inspectors, Testers, Sorters, Samplers, and 
Weighers

−7.858 0.278 <0.001 −9.320 0.265 <0.001

Janitors and Cleaners, Except Maids and 
Housekeeping Cleaners

−2.072 0.113 <0.001 0.098 0.129 0.448

Laborers and Freight, Stock, and Material 
Movers, Hand

−5.952 0.181 <0.001 −5.535 0.179 <0.001

Landscaping and Groundskeeping Workers 0.744 0.440 0.091 1.076 0.354 0.002

Life, Physical, and Social Science Technicians −8.794 0.270 <0.001 −7.093 0.375 <0.001

Machinists −8.518 0.596 <0.001 −5.866 0.770 <0.001

Maintenance Workers, Machinery −0.726 0.218 0.001 0.160 0.223 0.474

Maintenance and Repair Workers, General −2.900 0.111 <0.001 −2.611 0.097 <0.001

Mining and Geological Engineers, Including 
Mining Safety Engineers

−11.96 1.441 <0.001 −12.660 0.999 <0.001

Mobile Heavy Equipment Mechanics, Except 
Engines

−6.047 0.110 <0.001 −5.025 0.103 <0.001

Occupational Health and Safety Technicians −11.64 3.586 0.001 −8.387 2.892 0.004

Packaging and Filling Machine Operators and 
Tenders

−6.284 0.751 <0.001 −2.829 0.926 0.002

Painters, Construction and Maintenance −4.655 2.316 0.044 −0.905 4.572 0.843

Pourers and Casters, Metal −4.972 1.047 <0.001 −0.754 1.246 0.545

Production Workers, All Other −4.731 0.745 <0.001 −3.617 0.907 <0.001

Pump Operators, Except Wellhead Pumpers −5.945 0.785 <0.001 −5.579 0.613 <0.001

Stock Clerks and Order Fillers −9.029 0.438 <0.001 −5.172 1.051 <0.001

Supervisors of Production Workers −5.579 0.243 <0.001 −2.060 0.423 <0.001

Tank Car, Truck, and Ship Loaders −2.170 0.248 <0.001 −2.897 0.274 <0.001
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PEL Model AL Model

Coefficient SE P Coefficient SE P

Ushers, Lobby Attendants, and Ticket Takers −14.05 3.586 <0.001 −13.630 2.640 <0.001

Welders, Cutters, Solderers, and Brazers −3.864 0.418 <0.001 −4.289 0.329 <0.001

Woodworkers, All Other 0.179 0.303 0.554 0.310 0.243 0.203

Woodworking Machine Setters, Operators, and 
Tenders, Except Sawing

−3.869 0.514 <0.001 −2.177 0.678 0.001

Material Mined

Coal Reference Reference

Metal −0.741 0.069 <0.001 1.014 0.104 <0.001

Non-Metal −1.095 0.043 <0.001 −1.492 0.037 <0.001

Mine Type

Underground Reference Reference

Facility −4.024 0.053 <0.001 −2.670 0.052 <0.001

Surface −3.992 0.043 <0.001 −3.197 0.042 <0.001
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Figure 1. 
Average noise exposure in the coal, metal, and non-metal mining sectors from 1979 to 2014.
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Figure 2. 
Percentage of measurements exceeding 90 dBA before and after the implementation of the 

Mine Safety and Health Administration’s (MSHA) revised noise regulation in different types 

of facilities in the coal, metal, and non-metal mining sectors.
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Figure 3. 
Distribution of measurements for each exposure group before and after the year 2000 for all 

mining sectors.
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Table 1

Number of permissible exposure limit (PEL) and action level (AL) measurements removed during data 

cleaning.

Exclusion criteria PEL AL Total

Total 123,500

 Missing any exposure information 4,519 4,519 4,519

 No job title 919 319 1,238

 Measurements <60 dBA 23,327 2,042 25,339

 Measurements > 120 dBA 74 117 191

 No information on what was being mined 91,231 0 91,231

 No information on mine type 89 0 89

 Sampling time > 16 hours 452 17 469

 AL measurement prior to 2000 0 424 424
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